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A. EXECUTIVE SUMMARY 
Critical embedded systems are life-critical or safety-critical systems whose failure or 
malfunction may result in: 

 Death or serious injury to people, 

 Loss or severe damage to expensive equipment, 

 Environmental harm, or 

 Large, non-recoverable financial losses. 

Additionally, the definition is even further restricted to high-performance, 
distributed computing systems that: 

 Manage high-bandwidth I/O communications, 

 Involve real-time processing, and 

 Are environmentally constrained in Space, Weight, and Power (SWAP) 

consumption/dissipation. 

 

The focus of this paper is on those critical embedded systems that are life critical.   

The importance of designing security into life critical embedded systems from the 

beginning is increasingly evident as more devices are becoming interconnected as 

we move closer to an Internet of Things (IoT).  As we apply smart, connected, 

embedded computing devices to improve systems with life critical roles, obviously 

this needs to be done responsibly.  These devices have the potential to better 

mankind, but also the potential to be co-opted by malicious parties and do grave 

harm.  Unfortunately, simple, clear, and current “security tenets” are not yet well 

articulated for building life critical systems with embedded computing capabilities.  

Much of the guidance that has been written now fails to address both the 

increasingly sophisticated threats which these systems face, requiring security to be 

embedded more deeply in the system.  The current and future generations of 

embedded computing technology will continue to cut across industries 

“horizontally”, bringing to light once again the need for greater security and 

safeguards in these devices.  In that context, this document suggests basic security 

tenets to ensure that all life critical embedded systems across all industries have a 

common understanding of what is needed to protect human life, where it depends 

on or can be endangered by embedded computing. 

This document should not be taken as regulatory in any sense.  Each industry will need 

to evolve to conform to these tenets.  However, the timelines and details of such 

evolution are to be determined elsewhere, not in this document.  This document simply 

defines a safer end-state, not the route for each industry to get there. 
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B. INTRODUCTION 
The Internet of Things (IoT) will add 50 billion devices to the Internet by 2020 [1].  

Smart devices are already playing life critical roles in vastly different areas ranging 

from traditional Supervisory Control and Data Acquisition (SCADA) to modern 

Industrial Control Systems (ICS), connected cars, and countless areas of medicine, 

such as patient monitoring and embedded medical devices. These facts are driving 

the necessity of properly embedding security in the foundation of these devices.  

This is a difficult task with two primary hurdles.  First, many existing devices are 

unable to fully support security. Replacing or upgrading these will be costly and 

slow. Second, whatever changes are made must allow device vendors to keep pace 

with rapid advancements in the technology and attack spaces; few vendors choose 

to be security leaders.  The security of these devices will increasingly have national 

security implications as well, given the scale at which life critical technologies are 

being deployed.  It is important to note that although this paper refers specifically to 

devices, and not products, a life critical device could be part of a larger ecosystem of 

devices that could negatively affect the security of the life critical device itself.  

 As with all systems, the security and safety of these systems are subject to the 

“weakest link” challenge.  Thus, an additional focus on overall system integrity and 

how individual components and subsystems interact is key to avoiding situations 

where “the sum of the parts is a hole.”  Today, security is inadequate in many of 

these smart and embedded devices.  The establishment of a set of core security 

tenets that manufacturers should incorporate into their devices is needed.  These 

defining principles, or tenets, help establish best practices for ensuring that human 

life, information, and infrastructure will remain safe and secure.  This paper is the 

result of our efforts to identify and explain these tenets.  

The security tenets described in this paper were chosen to help “raise the bar” for 

security in the life critical embedded systems space, but they can do much more.  

There are currently a fair number of best practices and standards available for a 

wide range of industrial and consumer spaces.  However, there are few that have 

been identified as common across industries.  Much of the guidance available today 

was developed when security was viewed from a holistic system perspective, rather 

than building the security into the individual components.  Since most threat models 

are soon overtaken by technological advances, market pressures, and societal 

changes, this paper focuses instead on those guiding principles which can improve 

the security of life critical embedded systems (and potentially many other 

industries).   
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We acknowledge that many deployed life critical embedded systems will not meet 

all of the tenets specified in this paper.  Where possible, those systems should be 

upgraded to comply with this guidance as quickly as possible.  By their very nature, 

life critical embedded systems are often exposed to new threats due to their use as 

control points and typical high interconnectivity. Where such systems cannot be 

upgraded to comply with all the tenets, the systems should be phased out and 

replaced on a priority proportionate to the magnitude of their impact.   

The word “evolve” was purposely chosen in this document because in many 

situations a dash towards improved security or safety could favor one of these goals 

at the expense of the other.  Specifically, the reader is cautioned against assuming 

that security and safety are equivalent concepts.  While they are often related and 

combine to provide the appropriate degree of each, they have different motivations.  

One can imagine a system that is so secure that its operating parameters could not 

be changed without a specific key or password, even in an emergency.  This could 

quickly lead to a severe threat to the safety of the operators, customers, equipment, 

or the environment.  Similarly, the overzealous pursuit of safety could result in a 

system that was neither secure nor efficiently operable.  When considering the 

replacement of life critical embedded systems to improve safety and security, the 

goal should be to achieve a harmony between them that is appropriate for the 

environment. 

The guidance in this document is framed to shape certifications and specifications to 

come.  The strength of word choice (e.g., MUST or SHOULD) indicates the criticality 

and, thus, the priority, of implementing a particular tenet.  Use cases are included in 

Appendix A to illustrate the potential consequences of not implementing the tenets.  

The tenets are organized into seven areas: 

 General Security 

 Communications Security 

 Boot-Time Security 

 Run-Time Security 

 Managing Life Critical Embedded Systems Securely 

 Security for Back-end Systems 

 Monitoring for Advanced Threats 
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The tenets emphasize system integrity for a few reasons.  First, strong guidance 

already exists in many communities for engineering resilient, high-availability fault-

tolerant systems in the face of natural and man-made risks.  Second, the façade of 

availability presented by systems and components whose integrity is compromised 

can often be more lethal than situations in which failure of those components and 

systems is quickly recognized.  Third, strong guidance exists for ensuring 

confidentiality of information, but not all life critical embedded systems depend on 

confidentially of information.  In fact, confidentiality and privacy are occasionally 

sacrificed to ensure integrity and availability of life critical embedded systems.  

Throughout this document, the word “compromised” is synonymous with 

“corrupted or destroyed” and is considered an unacceptable outcome.  Consistently, 

where system integrity of life critical embedded systems is compromised, the 

potential for loss of human life, loss or severe damage to equipment or 

environmental harm is greatly increased. 

C. TENETS 

1. GENERAL SECURITY 

a. Systems MUST have documented threat models. 

The imperatives in this section of general security tenets are cornerstone 

starting points.  Implementation decisions should depend on a detailed 

threat model as well as the typical concerns of energy constraints and 

processing capabilities.  Ideally, these dependencies should be prioritized 

over cost wherever possible. Good guidance on formal threat modeling can 

be found with a quick web search.   

While threat models are always going to be part of a larger ecosystem, 

focusing on protection against those threats should be addressed.  Threat 

models should capture all assumptions and consider all aspects of the 

system.  For example, the models should include supply chain complexities 

where some equipment or components are often supported by third parties 

who might be trustworthy or untrustworthy to varying degrees.  While the 

threats to supply chains and other threats, such as malicious insiders, are 

beyond the scope of this work, they too should be assessed and included in a 

threat model for life critical embedded systems.  Such an assessment could 

lead to changes in procurement policies, personnel training, authentication 

protocols, and access control management.   
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The threat posed by physical access to a life critical system is based on the 

specific environment and how the system is used and maintained.  Protection 

of systems against physical tampering is a difficult undertaking, potentially 

resulting in much higher system purchase prices and operational costs.  

Concerns related to physical tampering are best approached through policy 

controls.  For example, physical access to process control systems in a 

refinery must be well-defined and enforced.   

It is no longer sufficient to consider any life critical embedded system in an 

enclave as adequately isolated from the rest of the world.  Air gapped 

solutions have been proven to provide a false sense of security [2] [3], so it is 

now necessary to assume threats will penetrate the enclave and insiders may 

accidentally or purposefully go around the air gap.  Air gaps should be 

viewed as part of a defense-in-depth solution, rather than a single solution 

that would prevent or deter an adversary from gaining access to a system or 

network.   Security must be engineered to protect “from the inside out” to 

provide additional security layered on the traditional “outside in” security 

engineering. 

As life critical embedded systems become more capable, it becomes 

increasingly important to consider each system end-to-end.  For instance, in 

some cars a Tire Pressure Indicator (TPI) originally only informed the driver 

of a need to change a tire.  Now that same TPI may send its data directly into 

the digitally controlled braking systems.  For each actuator (the control unit 

that makes changes to the system based on instructions from a controller), 

one must consider the full waterfall of sensors and analysis that contribute to 

each decision.  These components no longer exist in isolation. 

Furthermore, back-end systems can affect the threat model of the system as 

well.  It’s always possible that the back-end systems may go offline or, as with 

mobile systems, may be out of communications range for substantial periods 

of time. The threat model should include the entire lifecycle of the device and 

the subsequent devices which it depends upon for operation. The threat 

model should address what happens if the back-end system is retired 

permanently or its sponsoring organization is unable to maintain it due to 

bankruptcy or other conditions rather than capturing these situations under 

“fail safe” behavior.   
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It is also important to recognize and model the reality that in many life 

critical embedded systems some components are far more life critical that 

others.  For instance, in an unattended vehicle, the emergency brake is more 

life critical than the air conditioning (AC) system.  In safety engineering, all 

things electrical, even traditional AC systems carry specific fire risks, 

particularly in the event of a crash.  When planning for security, seemingly 

benign things like streaming connections to the vehicle’s radio, as well as the 

remote (cellular) ability to start the AC system, may represent attack vectors 

for the other systems in the car and, as such, must be properly modeled and 

any resulting security risks properly mitigated. 

Ideally, a proper threat model will help induce a policy of separation between 

critical and non-critical systems.  This concept is sometimes referred to as 

red/black separation, where signals and systems that carry sensitive 

information and control safety critical systems are kept physically separate 

from non-sensitive systems.  As a threat model is developed, the sensitive 

components of a system should be identified and ways to keep these 

components physically, or to a lesser extent, at least logically separated from 

less sensitive components should be developed and implemented.  As an 

example, one design option would be to have a car’s entertainment system, 

which may be connected to the Internet (e.g., for receiving streaming media 

content), kept completely separate from the car’s drive-by-wire controllers.  

However, while maintaining a strict policy of separation is ideal, there may 

be a need for the interconnection of systems to enhance safety and features.  

When such systems are connected, extra precautions should be taken to 

ensure logical separation of sensitive and non-sensitive components. 

Threat models must recognize that some systems will need to be in place for 

decades, while others may refresh annually or more frequently.  The 

imperatives for an update mechanism help mitigate some risks, but they do 

not address the vulnerabilities introduced when non-updatable legacy 

systems are connected directly to modern systems.  Life critical embedded 

systems should be engineered to include enough compute capacity for 

stronger cryptographic and run-time protections that will need to be added 

within the lifetime of the systems.  Ideally, life critical embedded systems 

would include a hardware root of trust and system integrity, as without such 

system hardening, updates could be unreliable or untrustworthy.  Even with 

these security mechanisms, systems may be compromised or simply fail.  Not 



9 

addressing remediation and failure plans can endanger lives or incur 

exorbitant, avoidable costs associated with replacing the system when 

threats get ahead of the deployed hardware.  The resulting threat models can 

be used to instill remediation plans inclusive of the update cycles and process 

flow.   

b. Systems MUST be engineered to fail safely. 

This security guidance is in addition to and not in place of traditional safety 

engineering.  Traditional safety engineering recognizes that distributed 

systems and their failure modalities can be complex.  Systems need to be 

engineered to fail gracefully, and important decisions like “fail open versus 

fail closed” need to be made carefully.  Systems need to be engineered to “do 

no harm” even when things are going wrong quickly.  Simple primitives can 

be tremendously invaluable, including a fully automatic (safe) shutdown 

procedure that is easily initiated from any of many emergency stop buttons 

throughout a facility.  As the complexity of systems and requirements 

continue to increase, fast, simple, and safe shutdowns become absolutely 

crucial, regardless of whether they are triggered by a manual stop button or 

automated detection of unstable states.  Complexity is just one of many 

reasons why security and safety within systems and their individual 

components must be considered and decided in the design phase as many 

aspects cannot be “bolted on” later.  Specific devices may have standards that 

apply to them, and there may be more detailed guidance. For example, for the 

industrial control space see the NIST Special Publication 800-82 series. 

c. The data usage, safety, and privacy aspects of life critical embedded 

systems MUST be clearly documented in plain language. 

Ecosystems that employ life critical embedded systems must clearly 

articulate the security and privacy risks in a well-organized manner using 

simple terms.  It is expected that life critical embedded systems must also 

articulate to the builders and integrators of systems and shared 

environments, the security and privacy threat models and risks.  This 

ultimately allows for users and owners to make a clear, informed choice in 

participation.  Many people come near life critical embedded systems, 

regardless of whether those life critical embedded systems are embedded in 

a car, or an airplane, or a factory floor.  In each case, these systems are now 

making complex decisions.  People must know what to expect of such critical 

systems.  For example, a vehicle’s Wi-Fi system may automatically connect to 
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open wireless systems in order to send information outbound or request 

information or updates.  This awareness includes clarity on life critical failure 

modalities of the system, as well as clarity on (otherwise) hidden 

dependencies such as the waterfall of sensors and analysis that contribute to 

each actuation (In case such a person was to note a sensor, processor, or 

actuator as faulty). 

d. Devices MUST only run hardened code. 

Before any code is signed for execution, it must be appropriately hardened 

through recognized industry best practices for manual and automated 

discovery of bugs and vulnerabilities, as well as remediation of the code.  For 

the purposes of this paper, hardening is defined as securing code by limiting 

its attack surface.  Additional remediation through obfuscation is desirable to 

slow reverse engineering but is not required.  Compiler based techniques for 

hardening code is strongly desirable, among a variety of techniques for 

providing run-time protection of the system.  While these tenets are not 

regulatory, an organization must establish a secure review process that 

would be engaged when major code changes are made throughout the 

lifecycle of a device. 

e. Devices MUST enforce least privilege. 

The concept of least privilege is that all system users and software operate 

with the lowest set of privileges needed to perform their duties.  Further, 

access permissions are only available for the minimum amount of time 

needed.  As the quantity and level of privileges increase, the attack surface 

and breadth of destruction increases.  Employing least privilege provides 

many security benefits including limiting the impact of malicious or 

unwitting insiders.  For example, consider the case of software that needs to 

access an area of memory.  If the minimum set of privileges (e.g., read, write, 

execute) needed by the software when accessing the memory are read and 

write, the memory should be configured with only those two privileges.  By 

not configuring the memory with the execution privilege, any rogue code 

written to memory cannot be executed. 

Least privilege must be architected into the device or system being 

developed.  For both major and minor components, it is important to identify 

the functions to be performed and the privileges needed for the functions to 
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operate.  Also, consider the privileges needed for communications across 

components.  When communications are necessary with devices or systems, 

take into account the level of privileges they use and, where possible, 

incorporate security techniques to mitigate any escalated privileges. 

2. COMMUNICATIONS SECURITY 

a. All interactions between devices MUST be mutually authenticated. 

Authentication is the process of confirming the identity of an entity, such as a 

person, device, or data.  Authentication of data refers to confirming the 

source of the data or validating that the data integrity has not been 

compromised.  All data, commands, and requests must be mutually 

authenticated to be trusted.  Any data, commands, and requests that cannot 

be authenticated should be ignored.  Authentication of data, commands, and 

protocols matter because it is dangerous to accept data from unverified 

devices and/or services.  Such data can not only corrupt or compromise 

devices, but also be the initial seed to grander threats and attacks.  In 

addition to the authentication of data, it is also important to authenticate the 

devices, services, and systems that want to communicate, share data, and 

enforce control.  Using strong mutual authentication to restrict such 

connections or communications at any layer helps protect the devices, 

services, and overall systems from such threats. 

Two common ways to perform mutual authentication as part of the 

communications protocol are the use of secure sessions at the network link 

layer (e.g., IEEE 802.11i (for Wi-Fi), DTLS in Constrained Environments 

(DICE)) or via digital signatures on data, commands, and requests at the 

appropriate application layer.   

A generally accepted digital authentication approach is based on elliptic 

curve cryptography (ECC), but over time other approaches may evolve.  For 

additional information please see FIPS PUB 186-4: Digital Signature Standard 

(DSS) [4]. 

Note that from a performance perspective, mutual authentication is now 

feasible in extremely constrained devices where such authentication was 

previously infeasible.  For example, recent implementations of the Elliptic 
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Curve Digital Signature Algorithm (ECDSA) have demonstrated that a 

number of 8-bit MCUs running at 8 MHz with only 32 kb of RAM are now 

capable of doing signature verification in a few seconds [5]. 

In addition to simple cryptographic authentication, it is desirable for devices 

to provide an attestation of their current security state.  Depending on the 

threat model, this might actually be required.  Such attestation could include 

digital fingerprints of the device’s configuration and all code loaded, among 

other important security metrics. 

In this tenet, authentication implies authorization.  However, for clarity, 

connections and data are authenticated as coming from a given source.  Once 

authenticated, the device must choose to trust or not trust that source based 

on not only authentication and attestation information, but also policy that 

should be updated over time.  Such dynamic control of authorization and 

access control is crucial to safely handling components and devices that 

become compromised as part of a much larger system.  Some means of 

efficiently providing such dynamic control include using mechanisms such as 

Online Certificate Status Protocol (OCSP) stapling, Trusted Network Connect 

(TNC), or other forms of dynamic Network Access Control (NAC) enforced 

either at the endpoint devices or at gateways between such devices. 

b. Continuous authentication SHOULD be used when feasible and 

appropriate. 

All data, commands, and requests should be continuously authenticated 

where feasible and appropriate.  Authentication could be verified either at 

set intervals or with each set of communications processed as part of the 

communications exchange.  Note that there could be an impact to 

performance depending on the functional requirements.  Nonetheless, 

function and risk should be weighed as part of the feasibility and 

appropriateness of this tenet in light of the danger to human life. 

c. All communications between devices SHOULD be encrypted. 

The goal of encryption is confidentiality, while other cryptographic 

techniques are employed to provide authentication or fraud 

resistance/detection.  Encryption protects the data so that only those who 
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have the appropriate keys may decrypt the data for reading or modification.  

This provides protection from eavesdroppers along the path between devices 

and/or systems.  Such eavesdroppers might be able to maliciously leverage 

the data in some way.  For example, captured process control information 

might provide hints to how some lucrative or dangerous process is 

accomplished, and perhaps how to interrupt its operation.   

Note that not all devices and environments are immediately amenable to 

encryption, particularly in long life, low Central Processing Unit (CPU) power 

embedded systems.  For those cases, a threat assessment is necessary to 

determine whether it would be prudent to replace/upgrade the device ahead 

of schedule or to introduce additional devices that can provide encryption 

capabilities for that device.   

Encryption alone does not provide sufficient security.  Encryption should be 

part of a comprehensive approach to raise the overall security posture of a 

system through improved confidentiality, authentication, and resistance 

to/detection of fraud, both on the local system as well as across a distributed 

computing environment.  Using encryption in some parts of a system cannot 

make up for security and safety failures elsewhere in the system design.   

3. BOOT-TIME SECURITY 

a. Devices MUST NEVER trust unauthenticated data or code during boot-

time. 

Devices must never trust unsigned (i.e., unauthenticated) configuration files 

or any other form of unsigned data.  To ensure confidence in the code’s 

authentication (and the device’s overall secure operation), devices must be 

designed to boot into a known good state.  

Configuration files can be trusted if they are signed by an appropriate 

authority.  They can be signed as part of a monolithic boot image or signed 

individually with appropriate protections against threats, including but not 

limited to rollback and replay and any other threats produced by diligent and 

professional security threat modeling (See Tenet 1a).  Trusting an unsigned 

configuration file can result in malicious misconfiguration of the system, 

leading to any number of significant consequences. 
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A generally accepted authentication approach is the use of digital signatures 

based on ECC, but we recognize that over time other approaches may evolve.  

When verifying the signatures, the device would use a root of trust (e.g., 

programmed into Read Only Memory (ROM) or fusible bits) that must be 

under the control of the owner of the life critical embedded system.  Allowing 

execution of unauthenticated code easily gives control of a device to 

aggressors.  Depending on the threat model facing the system, the owner 

might choose to authorize all of the manufacturer’s code to run on a given 

system or choose to put in place additional controls whereby the owner is 

able to control which code from the manufacturer is able to run on the 

device.  All code must be authenticated and authorized before it is loaded for 

execution.  This is true for the case of monolithic systems where the 

signature on the boot image includes signing the application on the device, as 

well as any operating system, firmware, and/or libraries.  This is also true for 

systems where an application is signed separately from an operating system. 

It is recognized that there may be challenges associated with implementing 

this tenet.  For instance, there may be substantial additional engineering 

efforts needed to ensure secure boot of any microprocessor or MCU.  

However, secure boot and the imperative that devices must never be 

permitted to run unauthorized code are essential for life critical embedded 

systems to protect human life, equipment, and the environment. 

b. Devices MUST NEVER be permitted to run unauthorized code. 

Authorization is the process of granting or denying an entity, such as a 

person or process, access to a resource or the ability to perform an activity.  

Authorization is based on whether the person or process has the correct set 

of permissions or privileges needed.   

This tenet assumes Tenet 3a is being implemented correctly.  Devices must 

never run anything other than authenticated code, authorized by the party 

responsible for managing the life critical embedded system.  Typically, this 

party is simply referred to as the owner of the life critical embedded system, 

regardless of any financial ownership and/or property rights.  Code refers to 

both firmware and software.   
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4. RUN-TIME SECURITY 

a. Devices MUST mitigate run-time security risks, including malicious data. 

Unfortunately, even after devices are booted into an authorized 

configuration, and even if the code has been reviewed and hardened via 

manual and automated best practices, the code can still have unknown 

runtime vulnerabilities that must be mitigated.  Mitigation can include policy-

based lockdown of resources such as processes, or content based filtering of 

potentially dangerous data.  This mitigation can be done via techniques, such 

as including some form of an intrusion prevention system (IPS) in the 

device’s network stack or ensuring that the device is only capable of 

connecting to a gateway that provides such an IPS function.  Other 

techniques include advanced methods for using memory introspection to 

ensure that executable code changes remain unchanged from boot.  

Additional techniques include host-based behavioral methods, application 

sandboxing, application whitelisting, device and configuration control, 

reputation based techniques, and cryptographic protections on run-time (not 

just boot-time) resources.  Through one mechanism or another, run-time 

security of devices in a life critical embedded system should be continuously 

monitored in a secure manner and continuously verified.  Specific 

mechanisms for providing run-time security will vary widely by system 

architecture and environment.   

There may be times when a suspected malicious access attempt is blocked, 

yet the attempt was both safe and legitimate.  In this context, extreme care 

must be taken in protecting any life critical availability requirements while 

attempting to mitigate run-time risks.  In extreme cases, it can be acceptable 

to build in a mechanism capable of blocking such access, but configured to 

only monitor such access until risk levels change.   

Denial of service attacks may also be mounted against life critical embedded 

systems.  For example, an adversary may attempt to saturate (i.e., flood) a 

target device with communications requests to cause it to be unable to 

respond, or perhaps drain a target device’s battery (i.e., a battery exhaustion 

attack).  Protections should be in place to mitigate these sorts of attacks.  Any 

solution must let the legitimate traffic flow while blocking the malicious 

attack traffic. 
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It is recognized that industry’s ability to protect activities at run-time is 

currently limited.  Best efforts must be taken to address risks as best as 

possible.  However, some threats will still succeed, and for that reason 

additional monitoring and mitigation is required for advanced threats as 

described in Tenet 7a. 

b. Devices SHOULD NEVER trust unauthenticated data during run-time. 

In distributed systems, devices often receive data from other devices.  

Consistent with the imperative that all interactions between devices MUST 

be mutually authenticated, devices must never trust unsigned data.  In this 

context, as a minimum, each device must confirm the pedigree of data 

coming from any device.  Additionally, it is preferable that, where possible, 

the pedigree flows with the data from the original sensor collection and 

through any handler devices, gateways, translation, and subsequent 

processing.  Each device handling the data appends its signature for any 

transformations and includes the original data when possible.  This strategy 

best mitigates the risk of the data being tampered in transit, as well as at rest 

and/or in processing by a compromised device.   

It is recognized that this strategy is rarely feasible in energy constrained 

systems that depend entirely on batteries or energy harvesting.  In the case 

of legacy systems, it is expected that they will be upgraded overtime to meet 

this tenet.  

c. When used, cryptographic keys MUST be protected. 

Protection technologies will vary based on the threat model and system 

architecture, but cryptographic keys used for authentication must be 

protected from leakage.  Please note that while it is important to protect 

private (secret) keys from leakage, it is equally imperative that public 

(authorized) keys must be protected from tampering, particularly for keys 

(or certificates) used as roots of trust in verification of other parties’ 

certificates or used in verification of signatures on signed code.  It should not 

be possible for an adversary to swap roots of trust or append their root of 

trust to any device’s truststore.   

Hardware protection for keys is desirable and might be required depending 
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on the threat model.  Specific protection technologies include but are not 

limited to Trusted Platform Modules (TPM), various types of security 

architectures, and physical countermeasures to side-channel analysis and 

both non-destructive and destructive types of reverse engineering.   

5. MANAGING LIFE CRITICAL EMBEDDED SYSTEMS SECURELY 

a. Devices and systems MUST be built to include mechanisms for in-field 

update. 

Vulnerabilities will be found in these devices, and they will need to be 

patched to stay safe and secure.  Additionally, many of the run-time 

protections previously mentioned often require updates to security content.  

All such updates must be done securely. 

Over time, aggressors will reverse engineer devices, discover vulnerabilities, 

and exploit those vulnerabilities.  For these reasons, all devices must include 

the ability to be quickly updated whenever vulnerabilities and/or 

exploitation are discovered. 

It is recognized that such updates are difficult and energy consuming in 

energy limited devices that are either battery constrained or constrained by 

energy harvesting.  It is also recognized that such battery constrained devices 

often need small, specialized batteries to last years or decades.  In such 

contexts, changing an entire firmware image could drain months or years of 

battery life or, in worst cases, if performed poorly, over half the battery life.  

Many aspects of the embedded world of IoT are often radically different from 

the simpler world of traditional Information Technology (IT).   

The ability to update these devices is essential to ensuring the continued 

proper and secure operation of these devices over the long term.  Further, 

these update mechanisms must be built into each device from the beginning 

since adding them to existing systems would most likely be less effective, less 

reliable, and less secure, if even possible.  For such highly constrained 

devices, it becomes crucial to include some form of update management 

process that ensures updates proceed smoothly and that partial, failed, or 

rolled back updates do not endanger the device’s functionality or place the 

device into a vulnerable or dangerous state. 
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In-field updates are one component of an overall lifecycle management plan.  

In cases where in-field updates are not possible, alternative practices for 

ensuring the continued security and safety of those devices must be in place.  

For these systems, an accelerated replacement schedule should be 

established– essentially associating an “expiration date” with such systems.  

Short-term extensions to this deadline should be provided if no suitable 

replacements with improved life critical capabilities are available at that 

time.   

b. Devices and systems for managing updates MUST be mutually 

authenticated and secured. 

As embedded systems and devices are deployed in remote and not easily 

accessible locations, it is required that the software updates (whether from a 

general feature update or due to a security patch) be done using remote 

communications.  While it is understood that the system infrastructure will 

be aware of the deployed devices it manages, the devices themselves must 

also have a mechanism to acknowledge and authorize the infrastructure 

communicating with it, especially as its configuration, software, and 

firmware can be affected.  Without the means for the device to authenticate 

and authorize the system, the device can be vulnerable to anyone or any 

system configuring and running any software on the device.  Visibility into a 

device’s identity is critical to the life cycle management of the device.   

Devices and systems should avoid communications with legacy and non-

updatable devices and systems.  Communication with devices that are 

unknown, have little to no security, or cannot be updated should rely on the 

ecosystem to establish trust, relationships, and verification of 

communications.  Devices should avoid accepting data from other devices 

with unknown security properties. 

6. SECURITY FOR BACK-END SYSTEMS  

a. Systems communicating with life critical embedded system devices 

MUST be protected in accordance with industry best practices. 

Many IoT systems use cloud-based services and technologies.  As IT and 

Operational Technology (OT) collide in both IoT and life critical embedded 

systems, it is important to remember that, where a device is driven by a 

server or cloud-based service, failing to protect that server/service can 
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produce outcomes equivalent to failing to protect the device.  Fortunately, 

there are many best practice guidelines for protecting such back-end servers 

and cloud-based services.  For example, the Open Web Application Security 

Project (OWASP) and SafeCODE provide valuable guidance in addition to 

vertical specific guidance.  Some of these organizations are currently 

developing guidance for embedded systems.  For instance, organizations like 

the Trusted Computing Group (TCG) have developed technologies to 

cryptographically attest the state of servers in the cloud.  Trustworthiness 

assessment of cloud-based services through attestation should be part of 

best practices for protecting IoT devices. 

7. MONITORING FOR ADVANCED THREATS 

c. Systems MUST be monitored for threats capable of defeating or avoiding 

these tenets. 

Unfortunately, even with all of the previously mentioned tenets taken into 

account, some of the most advanced threats, such as insiders, will still be 

capable of defeating any best practice.  To mitigate the risks from such 

threats, it is important that life critical embedded systems include a 

monitoring system where device states and communications between 

devices can be monitored.  Then, if an advanced threat is discovered, it can be 

dynamically tracked and potentially mitigated via remediation.  Such a 

monitoring capability will require strong data collection and analytic 

capabilities akin to those of Security Operations Centers (SOC) and/or 

Computer Emergency Response Teams (CERT).  It is also important to ensure 

that a mitigation plan is in place when an issue occurs.   

The capability to monitor will also require intimate familiarity with the 

unique aspects of the life critical embedded system and the ability to 

investigate and act on timescales appropriate for the specific life critical 

embedded system being monitored.  Such monitoring will need to span in-

field devices and any servers and/or cloud-based services driving them. 

Note that for systems already deployed, particularly those with devices that 

are extremely limited and not easy (or possible) to update, such monitoring 

can sometimes be achieved by deploying new devices to listen and/or sniff 

between already deployed devices without disrupting them. 
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The tenets included in this whitepaper provide a baseline level of security. 

They should not be viewed as all that needs to be done to secure life critical 

embedded systems.  Every organization must follow industry best practices 

and hygiene recommendations to protect itself against complex threats such 

as Advanced Persistent Threats (APT), Distributed Denial of Service (DDoS) 

attacks, Cross-site Scripting, and Structured Query Language (SQL) Injection. 
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APPENDIX A - Use Cases 

INTRODUCTION 

The use cases that follow were designed to demonstrate real-world security threats 

to life critical embedded systems and generally to devices that are part of the 

Internet of Things (IoT).  It is expected that these use cases will be disseminated, as 

they will have value and applicability in other contexts.   

The use cases themselves are intended to be standalone scenarios that illustrate one 

or more poor security practices or common vulnerabilities that are often found in 

life critical embedded systems today.  The use cases or “scenes” are tied together by 

an overarching story arc.  The narrative is fictional, however, the ideas and concepts 

are grounded in actual incidents or demonstrated security hacks.   

Throughout the narrative, each vulnerability is assigned a number which maps to 

one or more applicable security tenets.  This is intended to show the value and 

subsequent need for implementing the security principles found in the paper.  The 

mapping is listed in Appendix B. 

USE CASE 1 

The Widget Garage in the Bronx, New York is the main resource for many New York 

City (NYC) taxi’s routine maintenance, service, and repair needs.  The garage also 

services ambulances as needed.  In July, a number of taxis and limousines made 

their way through this maintenance depot for common maintenance items like new 

brake pads, oil changes, general repairs, and any on-board computer system 

firmware and Technical Service Bulletin (TSB) updates.  Each vehicle is typically 

triaged and sent through different bays of the maintenance departments for service.  

One bay in the garage usually performs the on-board computer system maintenance 

related to firmware and TSB updates.  Throughout the months of July and August, a 

significant number of the taxis, limousines, and ambulances went through this bay 

for routine updates to their control systems and creature amenities.   

One of the recently installed creature amenities included an in-vehicle Wi-Fi 

entertainment system for a more interactive rider experience.  This Wi-Fi system 

operated in a mesh configuration for connectivity, load, and cost, but eventually 
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communicated back to strategically placed base stations to provide rider internet 

connectivity and dispatch communications.  This mesh environment also enabled 

car-to-car communications to indicate the speed and flow of traffic amongst each of 

the taxis that communicate back to a number of the base stations that then 

communicate back to dispatch.  Some of these systems slightly adjusted the 

acceleration available to each vehicle to allow for more fuel/battery efficiency. 1 The 

Wi-Fi systems in the vehicles integrated directly to the computer based system 

controls on the taxis and limousines in order to report accurate and detailed fuel 

usage and battery charging statistics back to dispatch and the garage. 2 

A terrorist cell consisting of an unknown number of industrial and consumer control 

system hackers has spent months planning an attack on the Lincoln Tunnel.  

Through their planning, they have researched and analyzed traffic flows and 

patterns through the tunnel at various times to determine the optimum time to 

strike.  This cell, calling itself “Team F”, has implanted one of its members as a 

mechanic at the Widget Garage.  While employed at the garage for a few months, 

Team F’s member has modified the code within the acceleration items and braking 

items used by the taxis. 3 They also modified the code for the limousines to allow 

remote execution of braking. 4 The limousines’ braking firmware also had elements 

and updates that were shared with the ambulances from the manufacturer. 5 

This modified code allows for direct communications via the Wi-Fi connection 

utilized as part of the creature amenities in the vehicles. 6 This direct connection 

also allows for communications to the Controller Area Network (CAN) bus units in 

each vehicle. 7 Access to the CAN bus allows for direct control of acceleration and 

braking elements of the vehicles. 8 Furthermore, the mesh networking elements 

allow for communications from the CAN bus unit back to base stations and 

dispatch.9 

This modified code was utilizing a revoked certificate that was previously valid, 

signed, and stolen from the CAN bus controls manufacturers earlier in the year. 10 

The manufacturer would eventually realize that its signing certificates were stolen 

in the months after the attack, which will prompt it to issue a TSB which forces an 

update to the Certificate Revocation List (CRL). 

The Team F implant placed a number of firmware update SD Cards in locations 



23 

around the garage with the latest dates and revisions for April/May mimicking the 

style used by the vehicles’ manufacturers for look and appearance of the SD Cards. 11 

Throughout the months of July and August, a large number of these vehicles were 

brought in for updates to their on-board computer systems, battery systems, 

braking systems and in-car Wi-Fi entertainment systems.  There were no updates 

that failed, as the certificate seemed valid. 12 The majority of updates were 

performed utilizing the SD Cards containing the modified code. 

USE CASE 2 

At 4:00 p.m. on the Friday before the Labor Day holiday weekend, Team F 

positioned itself at the north end of the Lincoln Tunnel in a vehicle traveling back 

and forth through the tunnel.  They had a specially configured PWNIEPRO device 

with customized packages and a Software Defined Radio integrated.  Team F’s 

objective was to create a significant vehicle accident inside the tunnel with an initial 

maximum casualty impact, followed by a disruption in traffic for those trying to 

leave the city for the holiday weekend.   

They wait for a number of the serviced taxis and limousines that would be from the 

servicing company of Widget’s.  As their PWNIEPRO gathers and connects to the Wi-

Fi systems within each car, they verify connectivity to the CAN bus unit to confirm 

compromise and continuous connectivity. 13 Team F waits for compromised taxis 

traveling at speed with a few large tractor trailers close behind them at speed.  They 

spot an opportunity to create the most impact with four taxis and two limousines 

traveling at speed while dispersed throughout the three tubes. 

Through their continuous connections to the Wi-Fi and CAN bus systems, Team F 

executed a full brake on two of the taxis and an accelerate command on the other 

two taxis. 14 They also executed full braking commands on both limousines. 15 This 

caused a multiple car pileup at various places within each of the three tubes, and 

several vehicle fires dispersed throughout.  All traffic traversing the Lincoln Tunnel 

came to a complete halt as several points along the 1.5 mile tunnel were blockaded 

with wrecked vehicles.  Team F watched and confirmed the destruction from a 

vehicle in front of the fray, continuing on unscathed to the next stage of the attack.   
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USE CASE 3 

Emergency response vehicles were dispatched within seconds via the closest fire 

and emergency response location.  A few other members of Team F were also 

present directly on the traffic control system network via both physical locations 

and remote means. 16 

Over the past three months while the firmware updates were being deployed to the 

taxis, limousines, and ambulances, Team F was physically pulling manhole covers 

while dressed in apparent traffic control systems repairmen garb.  This was done in 

very low security and low risk locations that would most likely share infrastructure 

with the same systems that would be utilized by the emergency response vehicles. 17 

Team F placed a few wireless routers on network equipment that is used for the 

traffic control systems, including traffic cameras, via these physical attacks. 18 Only 

three routers were needed to gain persistent connectivity to the traffic control 

systems. 

The traffic light systems ride on a network that is not access control listed off from 

the video control systems. 19 This allowed Team F to easily manipulate the traffic 

light control system from both an emergency lighting standpoint as well as a 

maintenance mode standpoint, placing lights to blink in directions that are contrary 

to an emergency medical response.  

Furthermore, the camera systems in and around the tunnel often utilize a set of 

video communications that is claimed to be obfuscated end-to-end.  However, often 

times the methods of obfuscation are actually utilizing wrapper based end-to-end 

communications.  These common headers are well known within the traffic control 

systems community.  The fact that these are known headers allows for stripping of 

the wrappers on the communications packets and thereby collecting the raw video 

feeds in an un-obfuscated fashion.  Consequently, this communications obfuscation 

is no replacement for end-to-end encryption. 20 

Team F has done this packet stripping and created a number of traffic video 

recordings that indicate normal activity, including some with emergency vehicles 

passing by. 21 They placed these recordings into the camera network’s live stream 

for critical spots during the responder’s route.  This created confusion and 
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miscommunications between the dispatchers and the emergency responders.  

Team F had another method of attack to others already impacted by the traffic 

system.  This consisted of the mesh networks that the remaining compromised taxis 

and limousines used to communicate amongst one another which allowed for more 

direct control of the CAN bus units. 22 This mesh network allowed for Team F to 

randomly apply brakes and acceleration throughout any of the compromised 

vehicles and the connections they could acquire via their customized PWNIEPRO. 23 

The mesh network also allowed for communications back to dispatch on the 

vehicles that were not compromised through the firmware update affecting each 

vehicle in the fleet’s mesh system. 24   These communications allowed for Team F to 

modify the run-time parameters reported back to the dispatch through the mesh 

systems and base stations. 25 The vehicles could erratically accelerate at different 

rates thereby creating yet more confusion and accidents throughout the routes to 

the two closest hospitals. 

USE CASE 4 

Intermingled with emergency responders were nearby NYPD police officers and 

transit authority officials on the north end of the tunnel.  It was immediately clear to 

the local police that this was not an unlikely set of random accidents, but a 

coordinated terrorist attack affecting all three tubes simultaneously.  Due to the 

nature of the incident and their recently updated standard operating procedures, 

the local authorities activated their toxic gas detecting wristbands before driving 

into the tunnel.  The wristbands themselves wirelessly communicate with the patrol 

car’s CAN bus system, sending clear text alerts automatically to dispatch for faster 

dissemination of chemical and biological detection. 26 Almost immediately after 

entering the tunnel, the sensors detect heavy concentrations of phosphine gas, a 

colorless toxic gas that is extremely flammable and explosive.  The wristband 

worked flawlessly notifying the wearer and sending an alert to the local police 

station; the police then notify all local authorities and emergency personnel to not 

enter the tunnel without proper suits and respirators; significantly delaying any 

rescue attempts to injured motorists inside the tunnel.   

What the authorities did not know is that there was no phosphine gas in the tunnel, 
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Team F successfully hacked the wristband and created a false positive which was 

then reported.  Team F was able to accomplish this by using the PWNIEPRO to 

exploit the lack of access control on the wristband itself. 27 A quick sniff for open 

communications points in the area and interception of the wireless clear text 

communications between the wristband and the CAN bus system in the patrol car 

was all Team F needed to identify their next target. 28 Team F used this vulnerability 

to gain access to the wristband, root the device with the scripts on-board the 

PWNIEPRO, and generate a false positive alert which appeared to be authentic. 29 As 

accident victims were able to walk out of the tunnel with no visible signs of 

exposure, it took an additional 30 minutes before the confusion cleared and local 

authorities realized there was no toxic gas. 

USE CASE 5 

Many of the victims that could be removed from the tunnel were taken to the closest 

hospital via helicopter airlifts due to the traffic disruptions.  This was a result that 

Team F anticipated and had smaller teams waiting at each location to execute the 

next set of events.   

These smaller tactical teams had been running reconnaissance missions within the 

hospital to gather the types of medical devices they use, their network architecture 

mappings, and the most commonly used high-impact support devices as targets for 

a few months. 30 They decided initially to focus on the pumps used to deliver fluids, 

blood, and drugs to patients, heart monitors, and the medical record management 

system.   

However, they had also decided to target any vulnerable machines they could find as 

a result of the tight integration with Bluetooth devices for dictation and wireless 

communications devices that would communicate with the crash carts and 

specialized pumps. 31 During their reconnaissance, they also noticed a number of 

HVAC systems, three of the five elevator systems, and emergency power systems 

sharing the same network. 32   

Team F has more targets time to execute on the targets. 
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APPENDIX B - Mapping of Use Cases to Tenets 
1. 1.a, 1.b, 1.c 

2. 6.a 

3. 3.b, 7.a, 1.e 

4. 3.b, 7.a, 1.e 

5. 3.b, 7.a 

6. 1.d, 3.a, 3.b, 4.b, 5.b 

7. 6.a, 7.a 

8. 1.b, 6.a, 7.a 

9. 6.a 

10. 4.c 

11. 5.a, 5.b 

12. 4.c 

13. 2.a, 2.b 

14. 4.a 

15. 4.a 

16. 1.a, 2.a, 2.c, 6.a, 7.a 

17. 1.a, 7.a 

18. 1.a, 2.a, 2.b, 2.c, 7.a 

19. 1.a, 2.a, 2.b, 2.c, 7.a 

20. 1.a, 2.c, 4.c 

21. 1.a, 2.c, 4.c 

22. 4.a, 4.b, 4.c  

23. 1.b 

24. 1.b, 4.a, 4.b, 4.c, 7.a 

25. 2.a, 2.b, 2c, 4.a, 4.b, 4.c, 7.a 

26. 2.c 

27. 2.a, 3.a 

28. 2.c 

29. 4.a, 4.b 

30. 6.a, 7.a 
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31. 1.a, 1.b, 2.a, 2.c 

32. 6.a  
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APPENDIX C - Distilled Tenets 
1. General Security  

a. Systems MUST have documented threat models. 

b. Systems MUST be engineered to fail safely. 

c. The data usage, safety, and privacy aspects of life critical embedded 

systems MUST be clearly documented in plain language.  

d. Devices MUST only run hardened code. 

e. Devices MUST enforce least privilege. 

 

2. Communications Security 

a. All interactions between devices MUST be mutually authenticated. 

b. Continuous authentication SHOULD be used when feasible and 

appropriate. 

c. All communications between devices SHOULD be encrypted. 

 

3. Boot-time Security  

a. Devices MUST NEVER trust unauthenticated data and code during boot-

time. 

b. Devices MUST NEVER be permitted to run unauthorized code. 

 

4. Run-time Security  

a. Devices MUST mitigate run-time security risks, including malicious data. 

b. Devices SHOULD NEVER trust unauthenticated data during run-time. 

c. When used, cryptographic keys MUST be protected. 

 

5. Managing Life Critical Embedded Systems Securely 

a. Devices and systems MUST be built to include mechanisms for in-field 

update. 

b.  Devices and systems for managing updates MUST be mutually 

authenticated and secured. 

 

6. Security for Back-end Systems  

a. Systems communicating with life critical embedded system devices 

MUST be protected in accordance with industry best practices. 

 

7. Monitoring for Advanced Threats 

a. Systems MUST be monitored for threats capable of defeating or avoiding 

these tenets. 
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